The correct option is B 2
Given: x2+2xsin(xy)+1=0
⇒x2+1=−2xsin(xy)⇒x+1x=−2sin(xy)
We know that,
x+1x∈(−∞,−2]∪[2,∞)−2sin(xy)∈[−2,2]
So, solution is possible when
x+1x=−2=−2sin(xy)⇒x=−1⇒sin(−y)=1⇒siny=−1⇒y=3π2
x+1x=2=−2sin(xy)⇒x=1⇒siny=−1⇒y=3π2
Hence, there are 2 ordered pairs (−1,3π2) and (1,3π2).