1+√1−x2x=1+2y1−y+√1−y2 ...(1)
25(1−x2)=17−10√1−y2 ...(2)
Since, 0<x,y<1
Let x=sinA, y=sinB
⇒1+cosAsinA=1+2sinB1−sinB+cosB
⇒cot(A/2)=1+cosB+sinB1+cosB−sinB
⇒cot(A/2)=1+sinB1+cosB1−sinB1+cosB
⇒cot(A/2)=1+tan(B/2)1−tan(B/2)
⇒tan(π2−A2)=tan(π4+B2)
⇒π2−A2=π4+B2⇒A+B=π2
∴sin(π2−A)=cosA
⇒x2+y2=1
From eqn (2)
25(1−x2)=17−10x⇒25x2−10x−8=0⇒x=45,y=35 (∵0<x,y<1)
Only one solution.