The correct option is B 6
sinx(1−cosy)+siny(1−cosx)=0
4sin(x2)sin(y2){siny2cosx2+cosy2sinx2}=0
⇒sin(x2)=0 or sin(y2)=0 or sin(x+y2)=0
Case 1 :
sin(x2)=0
Hence, x=nπ
|x|≤1
Hence, x=0
Hence, y=±1
Case 2 ,
sin(y2)=0
Similar to the previous case, we will get y=0 and x=±1
Case 3,
sin(x+y2)=0
x+y2=nπ
x+y=2nπ
However, |x|,|y|≤1
Hence,
x+y=0
Hence,
|x|=|y|=12
Hence, the possible solutions are (12,−12) and (−12,12)
Hence, there are 6 solutions.