The number of pairs (x, y) satisfying the equation sinx+siny=sin(x+y) and |x|+|y|=1 is
sinx+siny=sinxcosy+cosxsiny
⇒siny(1−cosx)=sinx(cosy−1)
⇒tanx2=−tany2
⇒x=−y or x+2π=y
So, 2|x|=1 or x=±12 which gives the pairs (12,−12),(−12,12).
Also, the second condition gives x=1−2π2
Similarly there will be infinite possibilities.