Mutually perpendicular tangents on a parabola meet the directrix of the parabola.
So, finding the intersection of the curve and the directrix of the parabola x2=−4y
Directrix y=1
Now, 1=||1−ex|−2|
⇒|1−ex|=1,3⇒1−ex=±1,±3⇒1−ex=−1,−3 (∵ex>0)⇒ex=2,4∴x=ln2,ln4
Hence, the number of points is 2.