The correct option is A 3
Applying C1→C1+C2+C3
Δ=2∣∣
∣∣y+zzyz+xz+xxx+yxx+y∣∣
∣∣=0
Applying C2→C2−C1,C3→C3−C1
Δ=2∣∣
∣∣y+z−y−zz+x0−zx+y−y0∣∣
∣∣=2∣∣
∣∣0−y−zx0−zx−y0∣∣
∣∣=2xyz∣∣
∣∣011101110∣∣
∣∣
Again applying C1→C1+C2+C3
Δ=2xyz∣∣
∣∣211201210∣∣
∣∣
Taking 2 common and applying C2→C2−C1,C3→C3−C1
Δ=4xyz∣∣
∣∣1001−1010−1∣∣
∣∣=4xyz
As 4xyz=12⇒xyz=3
The number 3 can be assigned to any of x,y,z. Therefore the number of positive integral solution of Δ=12 is 3