The number of positive integral triplets (x, y, z) satisfying the equation ∣∣ ∣ ∣∣y3+1y2zy2xyz2z3+1z2xyx2x2zx3+1∣∣ ∣ ∣∣=11 is
3
Multiply by y,z and x in rows 1, 2 and 3 respectively and then take common y, z and x from column 1, 2 and 3 respectively, then ∣∣
∣
∣∣y3+1y3y3z3z3+1z3x3x3x3+1∣∣
∣
∣∣=1
⇒∣∣
∣
∣∣10y3−11z30−1x3+1∣∣
∣
∣∣=(C1→C1−C2 and C2→C2−C3)
⇒1(x3+1+z3)+y3(1)=11⇒x3+y3+z3=10