(a−2)x2+2ax+(a+3)=0
Case 1:a−2≠0⇒a≠2
Now,
x2+2a(a−2)x+a+3a−2=0
Conditions
(i) D≥0⇒4a2(a−2)2−4a+12a−2≥0⇒4a2−4a2−12a+8a+24(a−2)2≥0⇒a−6(a−2)2≤0⇒a∈(−∞,6]−{2}⋯(1)(ii) f(−2)>0⇒4−4aa−2+a+3a−2>0⇒4a−8−4a+a+3a−2>0⇒a−5a−2>0⇒a<2, a>5⋯(2)(iii) f(1)>0⇒1+2aa−2+a+3a−2>0⇒a−2+2a+a+3a−2>0⇒4a+1a−2>0⇒a<−14, a>2⋯(3)(iv) −2<−b2a<1⇒−2<−aa−2<1⇒2>aa−2>−12>aa−2⇒a−4a−2>0⇒a<2, a>4⋯(4)aa−2>−1⇒2(a−1)a−2>0⇒a<1, a>2⋯(5)
(4)∩(5)⇒a∈(−∞,1)∪(4,∞)⋯(6)
Case 2:a−2=0⇒a=2
0+4x+5=0⇒x=−54
Which lies in (−2,1)
Therefore, from equations (1),(2),(3),(6) and case 2
a∈(−∞,−14)∪{2}∪(5,6]
Hence, the positive integral values of a are 2,6.