(x2+x+1)2−(m−3)(x2+x+1)+m=0⋯(i)
Assuming
t=x2+x+1
=(x+12)2+34
⇒t∈[34,∞)
f(t)=t2−(m−3)t+m=0⋯(ii)
Let the roots of the equation (ii) be t1,t2
(i) For every t>34, there exists 2 distinct real roots for x2+x+1=t
(ii) For every t<34, there exists no real roots For x2+x+1=t
Given equation (i) will have4 distinct real roots iff both roots of equation (ii)
t1,t2>34
So, the requird condition are,
(i) D>0
⇒m2−10m+9>0⇒(m−1)(m−9)>0⇒m∈(−∞,1)∪(9,∞)
(ii) f(34)>0⇒916−3(m−3)4+m>0
⇒m>−454
(iii) −b2a>34⇒(m−3)2>34⇒m>92
∴m∈(9,∞)
Hence the number of inetgral values of m less than 17 is 7.