The correct option is C 4
α2+β2=α+β ...(1)
α2β2=αβ ...(2)
⇒αβ(αβ−1)=0
⇒α=0 or β=0 or αβ=1
For α=0
Substituting this in (1)
β2−β=0
⇒β=0,1
Hence roots are 0,0 and 0,1
Similarly for β=0
We get roots are 0,0 and 0,1
And for αβ=1
From (1)
(α+β)2−2αβ=α+β
substitute t=α+β
t2−t−2=0⇒(t−2)(t+1)=0
⇒α+β=2,−1
From α+β=2 and αβ=1
We get root 1,1
And from α+β=−1 and αβ=1
We get root ω,ω2
Hence total 4 quadratic equations are possible