The correct option is A 2
The given equation is (x+9)(x−3)(x−7)(x+5)=385.
This is a type 2 biquadratic equation.
On rearranging the terms and opening the bracket, we get,
(x+9)(x−7)(x−3)(x+5)=385
⇒(x+9)(x−7)(x+5)(x−3)=385
⇒(x2+2x−63)(x2+2x−15)=385
Put x2+2x=z
⇒(z−63)(z−15)=385
⇒z2−78z+945=385
⇒z2−78z+560=0
⇒z2−70z−8z+560=0
⇒(z−70)(z−8)=0
⇒z=70 or 8
x2+2x=70
⇒x2+2x−70=0
⇒x=−2±√4+2802
⇒x=−2±√2842
⇒x=−1+√71$or$−1−√71
x2+2x=8
⇒x2+2x−8=0
⇒x=−2±√4+322
⇒x=2 or −4
∴x=2,−4,−1+√71,−1−√71
Hence, the number of real integral solutions is2 i.e x=2,−4