The number of real roots of the equation cscθ+secθ−√15=0 lying in [0,π] is
We have,
f(θ)=cscθ+secθ−√15
Now,
f′(θ)=0
⇒cscθ+secθ=√15
Let
g(θ)=cscθ+secθ
So, the number of soution f(θ)=0 is same as number of points of intersection of the curve
y=secθ+cscθ
andy=√15
It is horizontal
line.
Now,
g′(θ)=−cscθcotθ+secθtanθ
=−cosθsin2θ+sinθcos2θ
=sin3θ−cos3θsin2θcos2θ
So,
If,θ∈(0,π4,)⇒g′(θ)<0
If,θ∈(π4,π2)⇒g′(θ)>0
If,θ∈(π2,π)⇒g′(θ)>0
Draw the
horizontal line y=√15(≃3.9)
So, there are three solutions (0,π).
Hence, this is the answer.