The number of real roots of the equation e4x+2e3x−ex−6=0 is
Given: e4x+2e3x−ex−6=0
Let ex=t
⇒t4+2t3−t−6=0
⇒t4+2t3+t2−t2−t−6=0
⇒(t2)2+2(t2)(t)+(t)2−t2−t−6=0
⇒(t2+t)2−(t2+t)−6=0
Let t2+t=z
⇒z2−z−6=0
⇒(z−3)(z+2)=0
⇒z=3 or z=−2
⇒t2+t−3=0 or t2+t+2=0 (rejected)
⇒t=−1±√132
Since, ex=t>0
∴ex=−1+√132
Hence, the given equation has only one real root.
Alternate Solution:
Let ex=t
Now, assuming
f(t)=t4+2t3−t−6, t>0
⇒f′(t)=4t3+6t2−1
⇒f′′(t)=12t2+12t>0 [∵t>0]
So, f′(t) is always increasing.
Also, f′(0)=−1<0, f′(1)=9>0
So, f′(t)=0, for only one value of t∈(0,1).
Now, the nature of the graph is
f(0)=−6<0
f(1)=−4<0
f(2)>0
Hence, f(t)=0 has only one real solution.