The number of real roots of the equation e4x−e3x−4e2x−ex+1=0 is equal to
Open in App
Solution
Let ex=t,(t>0) t4−t3−4t2−t+1=0 ⇒(t2+1t2)−(t+1t)−4=0⇒(t+1t)2−(t+1t)−6=0
Let t+1t=u(u>2) (u−3)(u+2)=0 ⇒u=3,−2 (rejected)
For u=3 ⇒t+1t=3⇒t2−3t+1=0 t=3±√52=ex x=ln3+√52,ln3−√52