The number of real roots of the equation e6x−e4x−2e3x−12e2x+ex+1=0 is
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2 Let e6x−e4x−2e3x−12e2x+ex+1=0 ⇒e6x−2e3x+1−ex[e3x+12ex−1]=0 ⇒(e3x−1)2−ex(e3x−1)−12e2x=0 ⇒(e3x−1)2−4ex(e3x−1)+3ex(e3x−1)−12e2x=0 ⇒(e3x−1)[e3x−1−4ex]+3ex[e3x−1−4ex]=0 ⇒(e3x−1+3ex)(e3x−1−4ex)=0
Either e3x=1+4ex
Or e3x+3ex=1
From the above graphs, only two roots are possible.