The correct option is C 2
Given equation
(x+1)(x+2)(x+3)(x+4)=120
⇒(x+1)(x+4)(x+2)(x+3)=120⇒(x2+5x+4)(x2+5x+6)=120
Assuming x2+5x=t
⇒(t+4)(t+6)=120⇒t2+10t−96=0⇒(t+16)(t−6)=0⇒t=6 or t=−16
Now,
x2+5x=−16⇒x2+5x+16=0⇒D=25−64<0
Non real roots.
x2+5x−6=0⇒(x+6)(x−1)=0⇒x=−6,1
Hence, the number of real roots are 2.