The number of real roots of the equation (x2+2x)2−(x+1)2−55=0
2
(x2+2x)2−(x+1)2−55=0⇒(x2+2x+1−1)2−(x+1)2−55=0⇒(x+1)2−12−(x+1)2−55=0⇒(x+1)22+1−3(x+1)2−55=0⇒(x+1)22−3(x+1)2−54=0Let p=(x+1)2⇒p2−3p−54=0⇒p2−9p+6p−54=0⇒(p+6)(p−9)=0⇒(p+6)(p−9)=0⇒p=9 or p=−6Rejectingp=−6⇒(x+1)2=9⇒x2+2x−8=0⇒x2+4x−2x−8=0⇒(x+4)(x−2)=0⇒x=2,x=−4