The correct option is A 0.0
We are given thattan(x+π6)=2 tanx⇒tanx+tanπ61−tanx tanπ6=2 tanxLet t=tanx, we get⇒t+1√31−t√3 =2t⇒t+1√3=2t(1−t√3)⇒√3t+1=2√3t(1−t√3)⇒√3t+1=2√3t−2t2⇒2t2−√3t+1=0For the above quadratic equationDiscriminant D=3−8<0,Hence, the equation has no real solution.