(sin−1x)3+(cos−1x)3=7(tan−1x+cot−1x)3
We know that,
tan−1x+cot−1x=π2 ∀ x∈Rsin−1x+cos−1x=π2 for x∈[−1,1]
Assuming sin−1x=t, we get
t3+(π2−t)3=7(π2)3⇒(π2)3−3×π2×t(π2−t)=7(π2)3⇒2t(π2−t)=−π2⇒2t2−πt−π2=0⇒(2t+π)(t−π)=0⇒t=−π2,π
As sin−1x∈[−π2,π2], so t=−π2
∴x=−1
Hence, there is only 1 solution.