The correct option is A zero
sinex.cosex=2x−2+2−x−2
⇒sin2ex=2x−1+2−x−1
⇒2sin2ex=2x+2−x
⇒12sin2ex=14(2x+2−x)
For any real value of x, 2x+2−x≥2
⇒12sin2ex≥12
⇒sin2ex≥1
But sin2ex≤1
So, sin2ex=1
But equality can hold only if RHS also equals 1 , which is possible only when x=0
Hence, sin2ex=1 is not true
Hence, there is no solution.