The number of real solutions of the equation: 2log2log2x+log1/2log2(2√2x)=1
2log2(log2x)+log1/2(log22√2x)=1
Put, x=2y⇒log2x=y
Then, 2log2(y)+log1/2(log22√2×2y)=1
Or, 2log2(y)+log1/2(log22y+33)=1
⇒ log2y2−log2(y+32)=1
⇒ log2⎛⎜⎝y2y+32⎞⎟⎠=1
⇒ y2y+32=2
⇒ y2=y+3
⇒ y2–y−3=0
Solving for y, we get,
y=1±√132 giving us 1 real value.
And, x=21±√132
This gives us 1 real solution.