x lies in interval (−12,12)
L.H.S,
sin−1(∞∑i=1xi+1−x∞∑i=1(x2)i)=sin−1(x21−x−x⋅x/21−(x/2))=sin−1(x21−x−x22−x)
Now R.H.S,
π2−cos−1(∞∑i=1(−x2)i−∞∑i=1(−x)i)=sin−1(∞∑i=1(−x2)i−∞∑i=1(−x)i)=sin−1((−x/2)1+(x/2)−(−x)1+x)=sin−1(−x2+x+x1+x)
Equating L.H.S = R.H.S,
x2⋅(11−x−12−x)=x⋅(−12+x+11+x)⇒x2(x2−3x+2)=x(x2+3x+2)⇒x2(x2+3x+2)=x(x2−3x+2)⇒x(x3+2x2+5x−2)=0
So, x=0 is one root of the equation.
Now,
x3+2x2+5x−2=0
Let f(x)=x3+2x2+5x−2∴f′(x)=3x2+4x+5≠0
So f(x) is monotonic in nature.
f(0)=−2 and f(1/2)=98
As f(0)⋅f(1/2)<0 so one root of f(x) lies between 0 and 12.
Hence there are two solutions of the given equation in given interval.