The correct option is A 2
(x−1)(x+1)(2x+1)(2x−3)=15⇒(x−1)(2x+1)(x+1)(2x−3)=15
⇒(2x2−x−1)(2x2−x−3)=15
Assuming 2x2−x=y,
(y−1)(y−3)=15⇒y2−4y+3=15
⇒y2−4y−12=0⇒(y−6)(y+2)=0
⇒y=6,−2
Now,
when y=6
2x2−x=6⇒2x2−x−6=0⇒(2x+3)(x−2)=0
⇒x=−32,2
and
when y=−2
2x2−x=−2⇒2x2−x+2=0
D=1−4(2)(2)<0
No real roots.
Hence, the equation has 2 real roots.