|x2+5x+4|+2x+6=0
Case:1- x2+5x+4≥0
⇒(x+1)(x+4)≥0
⇒x∈(−∞,−4]∪[−1,∞) ...(1)
The given equation becomes,
x2+7x+10=0
⇒(x+2)(x+5)=0
⇒x=−2,−5
But, x=−2 does not satisfy eqn(1)
∴x=−5 is the only solution in this case.
Case:2- x2+5x+4<0
⇒(x+1)(x+4)<0
⇒x∈(−4,−1) ...(2)
The given equation becomes,
−(x2+5x+4)+2x+6=0
⇒x2+3x−2=0
⇒x=−3±√172
But, x=−3+√172 does not satisfy eqn(2)
∴x=−3−√172 is the only solution in this case.
⇒ Only 2 solutions.