The correct option is B 1
log1/3(2(12)x−1)=log1/3((14)x−4)
For the log to be defined, we get
2(12)x−1>0 and (14)x−4>0⇒(12)x>12 and (14)x>4⇒(12)x>(12)1 and (14)x>(14)−1⇒x<1 and x<−1 (∵14,12<1)⇒x<−1⋯(1)
log1/3(2(12)x−1)=log1/3((14)x−4)⇒2(12)x−1=(14)x−4⇒2(12)x−1=(12)2x−4⇒(12)2x−2(12)x−3=0
Assuming (12)x=t
⇒t2−2t−3=0⇒(t+1)(t−3)=0⇒t=−1,3⇒(12)x=3 [∵(12)x>0]
Taking log on both sides, we get
⇒xlog12=log3⇒x=−log3log2∴x=−log23