|x−5||x−2||x+9|=4⇒|(x−5)(x−2)||x+9|=4∵|a||b|=|ab|⇒∣∣∣(x−5)(x−2)x+9∣∣∣=4(∵|a||b|=∣∣∣ab∣∣∣)⇒(x−5)(x−2)x+9=±4
Case 1:
⇒(x−5)(x−2)x+9=4
⇒(x−5)(x−2)=4(x+9)
⇒x2−7x+10−4x−36=0
⇒x2−11x−26=0
⇒x2−13x+2x−26=0
⇒(x−13)(x+2)=0
⇒x=13 or x=−2
Case 2:
⇒(x−5)(x−2)x+9=−4
⇒(x−5)(x−2)=−4(x+9)
⇒x2−7x+10+4x+36=0
⇒x2−3x+46=0D=9−4×46<0
So, no possible values.
Hence, the required number of values is 2.