The number of roots of (1−tanθ)(1+sin2θ)=1+tanθ for θ∈[0,2π)] is:
A
3,3π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4,2π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5,π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(0,2π)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C5,π (1−tanθ)(1+sin2θ)=(1+tanθ)⇒(1−sinθcosθ)(1+2sinθcosθ)=(1+sinθcosθ)⇒2cos2θsinθ−2sin2θcosθ−2sinθ=0⇒2(1−sin2θ)sinθ−2sin2θcosθ−2sinθ=0⇒sin3θ+sin2θcosθ=0⇒sin2θ(sinθ+cosθ)=0⇒sin2θ=0orsinθ+cosθ=0