The number of roots of the equation, 81sin2x+81cos2x=30 in the interval 0,π is equal to
3
2
4
8
Explanation for correct option
Given expression is,
81sin2x+81cos2x=30⇒81sin2x+8181sin2x=30
Let 81sin2x=t
⇒t+81t=30⇒t2-30t+81=0⇒t2-27t-3t+81=0⇒tt-27-3t-27=0⇒t-27t-3=0
∴t=27or t=3
If t=27
81sin2x=t⇒81sin2x=27⇒34sin2x=33⇒4sin2x=3⇒sin2x=34⇒sinx=32∴x=π3,2π3∵x∈0,π
If t=3
81sin2x=t⇒81sin2x=3⇒34sin2x=31⇒4sin2x=1⇒sin2x=14⇒sinx=12∴x=π6,5π6∵x∈0,π
Therefore, total possible solutions is 4.
Hence, the correct option is C.