The correct option is D 8
sec2θ cosec2θ+2 cosec2θ=8
⇒1sin2θcos2θ+2sin2θ=8⇒1+2cos2θ=8sin2θcos2θ(∵sinθ≠0,cosθ≠0)⇒1+2cos2θ=8cos2θ(1−cos2θ)
⇒8cos4θ−6cos2θ+1=0
⇒(4cos2θ−1)(2cos2θ−1)=0
⇒cos2θ=14 or cos2θ=12
⇒cosθ=±12,±1√2
Hence, the number of solutions is 8.