The correct option is B 1
Given:
cos3x+sin(2x−7π6)=−2
sinθ∈[−1,1]cosθ∈[−1,1]
So this is possible only when
cos3x=−1sin(2x−7π6)=−1
cos3x=−1
⇒3x=(2n+1)π, n∈Z
⇒x=(2n+1)π3⋯(1)
sin(2x−7π6)=−1
⇒(2x−7π6)=(4n−1)π2, n∈Z⇒2x=7π6−π2+2nπ⇒x=nπ+π3⇒x=(3n+1)π3⋯(2)
Solutions in [0,2π]
From equation (1),
x=π3,π,5π3
From equation (2),
x=π3,4π3
Hence, the required number of solution is 1.