The correct option is B 2
sin−1(x)+sin−1(1−x)
=sin−1(x√2x−x2+(1−x)√1−x2)
=sin−1(√1−x2)
Hence
x√2x−x2+(1−x)√1−x2=√1−x2
x√2x−x2+√1−x2−x√1−x2=√1−x2
x√2x−x2=x√1−x2
Squaring on both the sides, we get
x2(2x−x2)=x2(1−x2)
x2(2x−x2−1+x2)=0
x2(2x−1)=0
Therefore
x=0 and x=12
Hence there are 2, solutions, to the above equation.