The number of solution of the equation tan−1(x1−x2)+tan−1(1x3)=3π4 belonging to the interval (0, 1) is
0
1
2
3
∵xϵ(0,1)x1−x2>0, 1x3>0&x1−x2.1x3>1 ∴tan−1x1−x2+tan−11x3=π+tan−1(x1−x2+1x31−x1−x2.1x3)=π+tan−1(−1x)=3π4 ⇒x=1 (not possible)