Given equation:
1+logx(4−x10)=(log10log10n−1)logx10
For the log to be defined,
4−x10>0; x>0; x≠1⇒x<4⇒x∈(0,4)−{1}⋯(1)
Now,
1+logx(4−x10)=(log10log10n−1)logx10⇒1+logx(4−x)−logx10=logx10(log10log10n)−logx10⇒logx(x(4−x))=logx10(log10log10n)⇒log10(4x−x2)=log10log10n⇒4x−x2=log10n⇒x2−4x=−log10n⇒(x−2)2=4−log10n⇒x=2±√4−log10n
When n∈(1,104)−{103}, so
log10n∈(0,4)−{3}⇒4−log10n∈(0,4)−{1}⇒√4−log10n∈(0,2)−{1}
For a given value of n∈(1,104)−{103}, we get two solutions as
x1=2+√4−log10nx2=2−√4−log10n