Given : 2sin2θ−cos2θ=0 and 2cos2θ−3sinθ=0
Now,
2sin2θ−cos2θ=0
⇒2sin2θ−(1−2sin2θ)=0⇒4sin2θ=1⇒sin2θ=14⇒sinθ=±12 ⋯(1)
Also,
2cos2θ−3sinθ=0⇒2(1−sin2θ)−3sinθ=0⇒2sin2θ+3sinθ−2=0⇒(2sinθ−1)(sinθ+2)=0⇒sinθ=12 (∵sinθ∈[−1,1]) ⋯(2)
From equation (1) and (2), we get
sinθ=12∴θ=π6,5π6 (∵θ∈[0,2π])