Given equation is
2sin2x+sinx(1−2cos2x)−4=0⇒4sinxcosx+sinx(1−2cos2x)−4=0⇒4cosx+1−2cos2x=4sinx⇒4cosx+1−2(2cos2x−1)=4sinx⇒−4cos2x+4cosx+3=4sinx⇒4−(2cosx−1)2=4sinx
L.H.S≤4 R.H.S≥4
They will be same when both is equal to 4, so
sinx=1⇒x=π2cosx=12⇒x=π3
Hence, there is no solution.