Given: cos2θ=sin4θ and tanθ=cot5θ
Now,
cos2θ=sin4θ⇒cos2θ−2sin2θcos2θ=0⇒cos2θ(1−2sin2θ)=0⇒cos2θ=0, sin2θ=12
As θ∈(−π2,π2)⇒2θ∈(−π,π)
So,
2θ=−π2,π2,π6,5π6⇒θ=−π4,π4,π12,5π12 ⋯(1)
Also,
tanθ=cot5θ⇒sinθcosθ−cos5θsin5θ=0⇒sinθsin5θ−cosθcos5θcosθsin5θ=0⇒−cos6θcosθsin5θ=0⇒cos6θ=0, cosθ≠0,sin5θ≠0
As θ∈(−π2,π2)⇒6θ∈(−3π,3π)
So,
6θ=−5π2,−3π2,−π2,π2,3π2,5π2⇒θ=−5π12,−3π12,−π12,π12,3π12,5π12⇒x=−5π12,−π4,−π12,π12,π4,5π12 ⋯(2)
From equation (1) and (2), we get
x=−π4,π4,π12,5π12
Hence, the number of solutions of the given equation in (−π2,π2) is 4.