16sin2x+16cos2x=10
⇒16sin2x+161−sin2x=10
⇒16sin2x+1616sin2x=10
Let 16sin2x=t
⇒t+16t=10
⇒t2−10t+16=0
⇒(t−2)(t−8)=0
⇒t=2 or t=8
Now, 16sin2x=2 or 16sin2=8
⇒24sin2x=21 or 24sin2x=23
⇒4sin2x=1 or 4sin2x=3
⇒sin2x=14 or sin2x=34
⇒sinx=±12 or sinx=±√32
⇒x=π6,5π6,7π6,11π6 or x=π3,2π3,4π3,5π3
Hence, number of solutions = 8