The correct option is C More than 2 but finite
Given, sin3x−sinx=4cos2x−2
⇒2cos2xsinx=2(2cos2x−1)⇒2cos2xsinx=2cos2x⇒2cos2x(sinx−1)=0⇒cos2x=0,sinx=1
As x∈[0,2π]⇒2x∈[0,4π]
So, for cos2x=0
⇒2x=π2,3π2,5π2,7π2⇒x=π4,3π4,5π4,7π4sinx=1⇒x=π2
Therefore, the number of solution of the given equation is 5.