2cos2x−2√2cosx+tan2x−2tanx+2=0
⇒(√2cosx)2−2√2cosx+1+tan2x−2tanx+1=0
⇒(√2cosx−1)2+(tanx−1)2=0
This is only possible when
√2cosx−1=0 and tanx−1=0
⇒cosx=1√2 and tanx=1⇒x=2nπ±π4 and x=nπ+π4, n∈Z
So, in the given interval solutions are
−15π4,−7π4,π4,9π4
Hence, the number of solution is 4.