The correct option is A 2
x2−6x≤0
⇒x(x−6)≤0
⇒x∈[0,6]
3tan(x−π12)=tan(x+π12)
⇒3sin(x−π12)cos(x+π12)=sin(x+π12)cos(x−π12)⇒3(sin2x−sinπ6)=sin2x+sinπ6⇒2sin2x=2
⇒sin2x=1
⇒2x=2nπ+π2,n∈Z⇒x=nπ+π4,n∈Zn=0; x=π4∈An=1; x=π+π4=5π4∈An=3; x=2π+π4∉A
Hence, two solutions are there.