The number of solution(s) of the equation esinx−e−sinx−4=0 is
Open in App
Solution
Given, esinx−e−sinx−4=0 Putting esinx=t, we get t−1t−4=0⇒t2−4t−1=0⇒t=4±√202⇒t=2±√5⇒esinx=2±√5 As sinx∈[−1,1]⇒esinx∈[e−1,e] Now, we know that 2+√5>e2−√5<e−1 So, the given equation has no solution.