The number of solution(s) of the equationsin(-1)2x - cos(-1)x + tan(-1)2x = pi/2is
(1) Zero (2) One(3) Two (4) Infinitely many
−1≤2x≤1∩x∈[−1,1]∩2x∈R
−12≤x≤12∩−1≤x≤1∩x∈R
⇒x∈[−12,12]
−cos−1x−tan−12x=π2−sin−12x=cos−12x
−tan−12x=cos−12x+cos−1x
Converting tan−1 to cos−1,
⇒−cos−1√4x2+11=cos−1(2x2−√1−4x2√1−x2)
LHS is always -ve, and RHS is always +ve
∴cos−1x∈[0,π]
So, number of solution is zero.