The correct option is B 1
Given : tan−1x−cot−1x=cos−1(2−x) Above equality holds good iff
2−x∈[−1,1]⇒x∈[1,3]
Now,
2tan−1x−π2=cos−1(2−x)[∵tan−1x+cot−1x=π2]⇒2tan−1x=π2+cos−1(2−x)⇒π−sin−12x(1+x2)=π2+cos−1(2−x)[∵sin−12x(1+x2)=π−2tan−1x,x≥1]⇒π2−sin−12x(1+x2)=cos−1(2−x)
Applying cosine on both sides
⇒2x(1+x2)=2−x⇒x3−2x2+3x−2=0⇒(x−1)(x2−x+2)=0⇒x=1
Hence, the number of solution is 1.