The number of solution satisfying the question ∣∣∣1+sin3θ1−cos3θ1∣∣∣=∣∣∣cos θ4 cos θ03 sin θ∣∣∣ in θ ϵ (0, 4π) is equal to ___
sin3θ+cos3θ+1=3sin θ cos θ⇒sinθ+cosθ+1=0 or sinθ=cosθ=1⇒sinθ+cosθ+1=0⇒θ=π, 3π2, 3π, 7π2 in θϵ(0,4π)
Solve the following equations :(i) cos θ+cps 2θ+cos 3θ=0(ii) cos θ+cos 3θ−cos 2θ=0(iii) sin θ+sin 5θ=sin 3θ(iv) cos θ cos 2θ cos 3θ=14(v) cos θ+sin θ=cos 2θ+sin2θ(vi) sin θ+sin 2θ+sin 3θ=0(vii) sin θ+sin 2θ+sin 3θ+sin 4θ=0(viii) sin 3θ−sin θ=4 cos2θ−2(ix) sin 2θ−sin 4θ+sin 6θ=0