log10√x−1+12log10(2x+15)=1
For the log to be defined,
x−1>0; 2x+15>0⇒x>1; x>−152⇒x>1⋯(1)
Now,
log10√x−1+12log10(2x+15)=1⇒12log10(2x+15)=log1010−log10√x−1⇒log10(2x+15)=2log10(10√x−1)⇒log10(2x+15)=log10(10√x−1)+log10(10√x−1)⇒log10(2x+15)=log10(10√x−1)2⇒2x+15=(10√x−1)2⇒2x+15=100x−1⇒(x−1)(2x+15)=100⇒2x2+13x−115=0⇒(x−5)(2x+23)=0⇒x=5,−232∴x=5 (∵x>1)