The number of solutions for real x, which satisfy the equation 2log2log2x+log12log2(2√2x)=1:
A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 1 2log2log2x+log12log2(2√2x)=1⇒2log2log2x−log2log2(2√2x)=log22⇒log2(log2x)2−log2[log22√2x]=log22⇒log2(log2x)2[log22√2x]=log22⇒(log2x)2log2(2√2x)=2 ⇒(log2x)2=2log2(2√2x)=2log2(232x)⇒(log2x)2=2[32+log2x]=3+2log2x⇒(log2x)2−2log2x−3=0log2x=−1orlog2x=3⇒x=12orx=8 But for x=12,log2log2(12) is undefined ∴ Only possible value of x = 8.