The correct option is C 4
16sin2x+16cos2x=10⇒16sin2x+161−sin2x=10⇒16sin2x+1616sin2x=10
Assuming y=16sin2x
⇒y+16y=10⇒y2−10y+16=0⇒(y−8)(y−2)=0⇒y=2,8⇒16sin2x=2,8
Taking log on both sides,
log216sin2x=log22,log28⇒sin2x×log216=1,3⇒sin2x=14,34⇒sinx=12,√32 (∵sinx≥0 ∀ x∈[0,π])∴x=π6,5π6,π3,2π3