4cos2(π4−x2)+√4sin4x+sin22x=0
Since, cos2(π4−x2)≥0 and √4sin4x+sin22x≥0
So, the solution of above equation is exist only when
cos2(π4−x2)=0 and √4sin4x+sin22x=0
⇒12[cos(π2−x)+1]=0 and 4sin4x+4sin2xcos2x=0
⇒sinx+1=0 and 4sin2x=0⇒sinx=−1 and sinx=0
Which is not possible.
Hence, there is no solution.