The number of solutions of 5∑r=1cosrx=5 in the interval of [0,2π] is
cosx+cos2x+cos3x+cos4x+cos5x=5
we know, cosx,cos2x,cos3x,cos4x,cos5x≤1
considering both,
cosx,cos2x,cos3x,cos4x,cos5x=1
hence general solutions in the given interval are,
cosx=1⇒x=0,2π
cos2x=1⇒2x=0,2π,4π⇒x=0,π,2π
cos3x=1⇒3x=0,2π,4π,6π⇒x=0,2π3,2π
cos4x=1⇒4x=0,2π,4π,6π,8π⇒x=0,π2,π,3π2,2π
cos5x=1⇒5x=0,2π,4π,6π,8π,10π⇒x=0,2π5,4π5,6π5,8π5,2π
thus common solutions are,
x=0,2π
Hence, option 'B' is correct.