The number of solutions of log4x-1=log2x-3
3
1
2
0
Explanation for correct option
Given, log4x-1=log2x-3
⇒log4x-1=log412x-3⇒log4x-1=2log4x-3⇒log4x-1=log4x-32⇒x-1=x-32⇒x-1=x2-6x+9⇒x2-7x+10=0⇒x2-5x-2x+10=0⇒xx-5-2x-5=0⇒x-5x-2=0∴x=2,5
At x=2,logx-3 is undefined.
At, x=5,logx-3 will be log2,
∴x=5
So, one solution exist
Hence, the correct option is OptionB